Environmental Data Science and Analytics MSc
Year of entry 2025
- Start date
- September 2025
- Delivery type
- On campus
- Duration
- 12 months full time
- Entry requirements
- A bachelor degree with a 2:1 (hons)
Full entry requirements - English language requirements
- IELTS 6.5 overall, with no less than 6.0 in any component
- UK fees
- £14,250 (Total)
- International fees
- £32,750 (Total)
- Contact
- geo-tpg-enq@leeds.ac.uk
Course overview
As global discussions are increasingly focused on the environment and sustainability, the need to understand and interpret both built and natural environmental data is more crucial than ever. Governments, organisations, and industries across the world are seeking individuals who can leverage data to make informed, sustainable decisions.
Our Environmental Data Science and Analytics MSc is designed to give you a fuller understanding of data and what appropriate interpretation and insight generation means in various environmental contexts. Throughout, you'll develop a broad understanding of environmental issues and how data driven analysis can help address these.
You’ll build the skills needed to analyse, understand, interpret and visualise complex environmental data; generating insights that address real-world environmental challenges. You’ll apply techniques from data science including environmental modelling, machine learning, visualisation and data curation to environmental data, with a focus on analysis through programming.
Here at Leeds, you’ll have the opportunity to learn from leading researchers in the field, with input from the School of Geography, the School of Earth and Environment, and the School of Computer Science.
By the end of the course, you’ll be equipped with the specialist knowledge and skills that are sought after across multiple industries, especially those dealing with large scale environmental data to address the needs of society.
Why study at Leeds:
- Our globally-renowned research from the School of Geography, School of Earth and Environment and the Leeds Institute for Data Analytics, the national institute for data science and artificial intelligence feeds into the course, shaping your learning with the latest thinking in environmental data science and analytics.
- Advance your skills and knowledge in areas such as environmental policies, programming for data science, machine learning, AI, satellite technology and interpreting large hyperdimensional data.
- Tailor the course to suit your career aspirations with a selection of optional modules in areas like web-based GIS, GIS and environment and digital image processing for environmental remote sensing.
- Conduct your own project work which will enable you to develop transferable skills as a researcher, investigating a real-world issue that explores and develops your interests.
- Access specialist facilities which will complement your learning including laboratories and an excellent GIS computer cluster with industry-standard software.
- Experience expert theoretical and practical teaching delivered by a programme team of academics who are actively engaged in ground-breaking research in the School of Geography and the School of Earth and Environment.
- Put theory into practice with exciting fieldwork opportunities, allowing you to develop the understanding and skills in data acquisition and deployment of sensors to collect environmental data.
Related courses
Urban Data Science and Analytics MSc
This Masters degree is a great fit for students interested in urban processes and using data-driven solutions to provide insight for future planning and policies. Like our Environmental Data Science and Analytics MSc, you’ll build key skills in data wrangling, machine learning, data analysis, visualisation and creative coding – but with a specialised focus surrounding an urban context.
Air Quality Solutions with Data Science MSc
Take a data science approach to a broad range of air quality-related topics, including emissions, monitoring, modelling, pollution exposure, health impacts and policy and economic appraisal. From Clean Air Zones to managing indoor sources of air pollutants, you’ll use research-led pollution-monitoring techniques to critically evaluate the impact of these interventions.
Course details
The course is designed to give you an understanding of the end-to-end workflow of data in an environmental context, allowing the nuances of how and why data from the environment is collected, and the need for appropriate analysis for policy and management relevant insights.
The course has a particular focus on the data science and analytic techniques, giving you the skills to apply them to complex environmental issues – allowing you to gain in-depth specialist knowledge needed to ensure that data-driven environmental decisions are based on accurate, reliable and correctly interpreted data. A multitude of environmental data, and its specific context and form, is considered and worked with to give a breadth of experience necessary to derive insights and solutions creatively to real world problems.
You'll take compulsory modules that are designed to progressively include more programming and data science, moving from fundamental knowledge to application of skills in a creative manner.
On completion of the course, you'll be able to demonstrate in-depth data science techniques to environmental data, with understanding of the data context allowing for sophisticated insight generation that is appropriate to inform decision making in multiple scenarios. The combination of relevant data science techniques to environmental data and understanding of environmental science context will allow you to demonstrate an ability to generate creative solutions, alongside insights.
Course Structure
The list shown below represents typical modules/components studied and may change from time to time. Read more in our terms and conditions.
Most courses consist of compulsory and optional modules. There may be some optional modules omitted below. This is because we assess the content of the programme regularly and occasionally add more optional modules to make sure students have the best possible experience. Before you enter each year, full details of all modules for that year will be provided.
Compulsory modules
Programming for Data Science – 15 credits
Develop a strong foundation in programming to enhance your data science skill set. This module is designed to give those with little or no programming experience a firm foundation in programming for data analysis and AI systems, recognising a diversity of backgrounds. The module will also fully stretch those with substantial prior programming experience (e.g., computer scientists) to extend their programming and system-building knowledge through self-learning supported by on-line courseware.
Data to Insights in Multiple Environments – 30 credits
Specifically aligned to the aims of the MSc, this cornerstone module brings together a myriad of leading researchers working in different environments (e.g. terrestrial, fresh water, and marine) to first provide you with an environmental content of why and how data is collected. You’ll then analyse and draw insights in practical sessions to explore how this data can be analysed for insight generation in a meaningful and appropriate way. This module incorporates a field course, where you'll get hands-on with modular sensors and deployment, whilst working alongside, and with, your cohort.
Data Science for Practical Applications – 15 credits
Gain experience and acquire foundational knowledge in data science. From being introduced to concepts in data handling, exploratory data analysis, to machine learning and visualisation. You'll have opportunities to work with a variety of spatial and spatiotemporal datasets relating to practical problems in the real world, including multiple environments.
Creative Coding for Real World Problems – 15 credits
This will be your chance to enhance your creativity and develop your technical skills in relation to variety of mixed environments. You’ll work in groups to derive solutions that are novel and insightful through application of programming skills.
Machine Learning for Environmental Data – 15 credits
Following on from Data to Insights in Multiple Environments in semester 1, here we continue to investigate the use of specialised data science and machine learning techniques in the analysis of environmental data in a broader context, incluing socio-environmental and ethics. Focusing on how techniques from machine learning can be utilised for a context specific analysis for large scale problems, you'll learn the fundamentals of machine learning and the applications across multiple data types, including spatial data.
Environmental Data Science Project – 60 credits
This project will take the place of the traditional dissertation. Your project submission is designed to reflect the types of data science outputs you might encounter in your future career in the form of a ‘notebook’-style analysis and an associated practical briefing report. This brings together skills in data science and programming, and meaningful insight generation that can be used to inform decision making in multiple contexts, including influencing policy.
Optional modules
Please note: The modules listed below are indicative of typical options.
GIS and Environment – 15 credits
We give you the opportunity to explore the diverse applications of GIS in environmental studies, including terrain modelling, hydrology analysis, ecological studies, and land use mapping. The module covers issues in the application of GIS such as sampling strategies, scale, generalisation, error and uncertainty, and grid-based modelling before looking at how you can use these methods to understand landscape processes. By the end of this module, you'll gain skills in utilising ArcGIS and other GIS software packages and interpreting spatial environmental data.
Digital Image Processing for Environmental Remote Sensing – 15 credits
This exciting module will introduce you to the fundamental principles of satellite image acquisition, processing, and interpretation as well as concepts, theories, and methods of earth observation from aircraft and earth orbital satellites for environmental research. You’ll learn how to use appropriate software to read, display, restore, enhance, classify and extract information about the land surface from diverse types of remote sensing images. You'll also be able to explain and perform the standard workflow used to turn remote sensing data (i.e. images) into information (i.e. thematic outputs) in a range of applications. Upon successful completion of this module, you'll be able to use digital technology and techniques to create classified images and understand the sources of digital environmental data.
Environmental Assessment – 15 credits
Discover the principles and practice of environmental assessment, emphasising tools that are applied to infrastructure and development plans. Following an initial focus on Environmental Impact Assessment, you'll be taught how to use other widely used tools, including Strategic Environmental Appraisal, Environmental Risk Assessment, Multi-Criteria Appraisal, and Environmental Justice Appraisal. Enabling you to gain familiarity with the tools used in professional practice, this module will develop your understanding of how activities ranging from numerical modelling to public participation are used to support decision making.
Web-Based GIS – 15 credits
We will provide you with the technical skills required to build web-based mapping applications. The module will introduce industry-standard web-development technologies for data storage, manipulation, visualisation, and analysis including HTML, Javascript and CSS, client-side mapping libraries, database management systems and server-side technologies. This module focuses on developing your skill set through plenty of hands-on practical coding tasks. You'll then get the opportunity to build a web-based GIS application of your choice for your final project. Through this module, you'll gain transferable skills in web development and database management, along with enhanced abilities in effective database and file management and developing secure and efficient code.
Fieldwork
Fieldwork provides a great opportunity to study a fascinating subject in contrasting environments away from the University. On this course, we offer the opportunity to undertake fieldwork as part of the Data to Insights in Multiple Environments module, in the UK, to develop your understanding and skills in data acquisition and deployment of sensors to collect environmental data.
In addition, you can also opt to conduct fieldwork as part of your dissertation. An increased understanding of how and why data is collected will allow for enhanced context appropriate interpretation of analysis that results from data.
Learning and teaching
The course is designed to develop both your practical skills in data science and develop a deeper understanding of environmental issues and contexts from which data is derived. This course takes a problem-based learning approach – presenting real-world problems where you must use your growing skills and knowledge to develop creative solutions. This is embodied using practical sessions, individual and group, where you’ll practice skills; reducingthe number of modules that are purely lecture based. Datasets used are sourced from leading researchers in the field, or from industry, reflecting a variety of data types and contexts.
A combination of face-to-face learning in a variety of learning environments such as practical labs, lectures, seminars, and group working are used alongside digital platforms to enhance and scaffold learning.
Active research environment
You'll be taught by an experienced team of academics and researchers who are actively engaged in cutting-edge research and part of the Centre for Spatial Analysis and Policy, River Basin Processes and Management, and Ecology and Global Change research groups within the School of Geography, School of Earth and Environment.
Specialist facilities
You'll have access to excellent teaching facilities within the School of Geography, including a GIS computer cluster with industry-standard software.
Programme team
On this course, you’ll be taught by our expert academics, from lecturers through to professors. You may also be taught by industry professionals with years of experience, as well as trained postgraduate researchers, connecting you to some of the brightest minds on campus.
Assessment
The course is designed to assess you through the application of your data science skills within the context of environment problems; namely this is through the writing of code and analysis and interpretation of findings, with a focus on insight generation. To replicate the type of work graduates from this course are expected to encounter, assessments will be both individual and group based, with the interpretation taking forms such as briefing documents, panel presentations, and executive summaries.
Assessments will capture your ability to conduct in-depth enquiries using data science, within the context of complex environmental problems and challenges.
Applying
Entry requirements
A bachelor degree with a 2:1 (hons) in a relevant subject. Those with a background in geography, environmental science, natural sciences, or related discipline, who can also demonstrate good quantitative and/or computing skills are particularly encouraged to apply. Alternatively, those with a background in engineering, computer science, or related discipline, with demonstratable academic, volunteer, or work-based experience are also encouraged to apply.
Applicants should also possess a keen interest in harnessing data science to understand the natural environment and address environmental issues.
Applicants with any of the following will be considered on a case-by-case basis:
Several years of professional experience in a relevant field where applicants do not meet the above requirement. In this case, please contact the Admissions Team to discuss your suitability for the programme.
International
We accept a range of international equivalent qualifications. For more information, please contact the Admissions Team.
English language requirements
IELTS 6.5 overall, with no less than 6.0 in any component. For other English qualifications, read English language equivalent qualifications.
Improve your English
International students who do not meet the English language requirements for this programme may be able to study our postgraduate pre-sessional English course, to help improve your English language level.
This pre-sessional course is designed with a progression route to your degree programme and you’ll learn academic English in the context of your subject area. To find out more, read Language for Science (6 weeks) and Language for Science: General Science (10 weeks).
We also offer online pre-sessionals alongside our on-campus pre-sessionals. Find out more about our six week online pre-sessional.
You can also study pre-sessionals for longer periods – read about our postgraduate pre-sessional English courses.
How to apply
Application deadlines
Please read our How to Apply page for full details, including application deadlines and what to include with your application.
Applicants are encouraged to apply as early as possible.
30 June 2025 – International applicants
12 September 2025 – UK applicants
Click below to access the University’s online application system and find out more about the application process.
If you're still unsure about the application process, contact the admissions team for help.
Read about visas, immigration and other information in International students. We recommend that international students apply as early as possible to ensure that they have time to apply for their visa.
Admissions policy
University of Leeds Admissions Policy 2025
This course is taught by
Contact us
School of Geography Postgraduate Admissions Team
Email: geo-tpg-enq@leeds.ac.uk
Telephone:
Fees
UK: £14,250 (Total)
International: £32,750 (Total)
Read more about paying fees and charges.
For fees information for international taught postgraduate students, read Masters fees.
Additional cost information
Standard travel, subsistence and accommodation costs associated with compulsory field trips are covered by the University. However, you must pay for incidental or personal expenses such as suitable clothing and footwear.
There may be additional costs related to your course or programme of study, or related to being a student at the University of Leeds. Read more on our living costs and budgeting page.
Scholarships and financial support
If you have the talent and drive, we want you to be able to study with us, whatever your financial circumstances. There may be help for students in the form of loans and non-repayable grants from the University and from the government. Find out more at Masters funding overview.
Career opportunities
The specific environmental context of the course allows you to enter specialised careers that require a contextual understanding of data and context from the environmental domain, including environmental consultancies, transport, engineering, utilities (e.g. water, energy, renewables) and government agencies.
More widely, the course will equip you with data science and analytical skills that are vital to many industries across the globe. Growth in the data science field is only increasing, with the number of opportunities growing year on year, from positions in local authorities and governments, industry (e.g. finance, telecoms), NGOs; wherever there is a need for data scientist or data analyst.
Plus, University of Leeds students are among the top 5 most targeted by top employers according to The Graduate Market 2024, High Fliers Research, meaning our graduates are highly sought after by some of the most reputable companies in the field.
Careers support
At Leeds, we help you to prepare for your future from day one — that’s one of the reasons Leeds graduates are so sought after by employers. The University’s Careers Centre is one of the largest in the country, providing a wide range of resources to ensure you are prepared to take your next steps after graduation and get you where you want to be.
- Dedicated Employability Officer — gain quality advice, guidance and information to help you choose a career path. From CV and cover letter writing to supporting you with job applications, our School’s dedicated Employability Enhancement Officer is on hand to help maximise your capabilities through a process of personal development and career planning.
- Employability and networking events — we run a full range of events, including careers fairs in specialist areas and across broader industries, with employers who are actively recruiting for roles, giving you the opportunity to network with industry sponsors.
- MyCareer system — on your course and after you graduate, you’ll have access to a dedicated careers portal where you can book appointments with our team, get information on careers and see job vacancies and upcoming events.
- Opportunities at Leeds — there are plenty of exciting opportunities offered by our Leeds University Union, including volunteering and over 300 clubs and societies to get involved in.
Find out more at the Careers website.