Mechatronics and Robotics Engineering MEng, BEng
Year of entry 2025
- UCAS code
- HH36
- Start date
- September 2025
- Delivery type
- On campus
- Duration
- 4 years full time
- Work placement
- Optional
- Study abroad
- Optional
- Typical A-level offer
- AAA (specific subject requirements)
- Typical Access to Leeds offer
- ABB
Full entry requirements - Accredited
- Yes
- Contact
- ugelec@leeds.ac.uk
Course overview
Mechatronics and Robotics Engineering is at the forefront of progression across a whole host of large industries globally including transport, healthcare, entertainment, and energy. The demand for unique and innovative advances in technologies to deliver sustainable solutions for the future is ever-growing — meaning mechatronics and robotics engineering couldn’t be more relevant than they are today.
This multidisciplinary course offers you the opportunity to study the most exciting aspects of electronics, mechanical design and artificial intelligence and apply them to the design and manufacture of sophisticated intelligent systems.
You’ll also have access to cutting-edge research being carried out in the EPSRC National Facility for Innovative Robotic Systems, alongside industry-standard software and lab facilities, right here on campus. Additionally, we offer exciting opportunities like studying abroad and industrial work placements to ensure you have the best grounding to head out into the professional world.
Why study at Leeds:
- This course is accredited by the Institution of Engineering and Technology (IET) and the Institution of Mechanical Engineers (IMechE).
- Our School’s 100-year globally-renowned research activity has been responsible for engineering new technologies and creating pioneering industry-driven developments and feeds directly into your course, shaping your learning with the latest thinking.
- Experience expert teaching delivered by a programme team made up of academics and researchers who specialise in robotics and a variety of other product engineering disciplines.
- Enjoy a more practical approach to learning, with access to our specialist facilities during your project work, including lecture theatres and labs featuring industry-standard equipment and the latest technology.
- Enhance your career prospects and give your CV that competitive edge before you graduate with our industrial work placement opportunities. Our close industry links have given previous students the chance to work at — and build professional relationships with — major organisations such as Amazon, Rolls-Royce and Sony.
- Gain invaluable life experience and advance your personal development with our exciting study abroad programmes, spanning across universities worldwide.
- Make the most of your time at Leeds by joining our student society ShockSoc where you can meet students on your course, attend high-quality technical visits, enjoy social events and get the chance to put theory into practice by participating in our own Robot Fighting League (RFL). Watch our RFL video to find out more.
Related course
Want to give your CV that competitive edge? Take a look at our degree that includes an industrial placement year, giving you the opportunity to build key professional skills and gain invaluable work experience that could set you apart in the jobs market when you graduate.
Join our online taster courses
Our five-part series of short courses offers a great introduction to medical device design and the exciting future of medical technology. Join today on FutureLearn.
Benefits of an integrated Masters
Learn more about what an integrated Masters is and how it can benefit your studies and boost your career.
Accreditation
Institution of Mechanical Engineers (IMechE)
Institution of Engineering and Technology (IET)
Accreditation is the assurance that a university course meets the quality standards established by the profession for which it prepares its students.
This course is accredited by the Institute of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET) on behalf of the Engineering Council.
This integrated Masters degree (MEng, BEng) is accredited for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
Course details
This multidisciplinary course gives you the chance to broaden your knowledge and skills, exploring many exciting aspects of electronics, mechanical design, and artificial intelligence.
You’ll learn the fundamental concepts of the field, alongside new innovations currently trending in the field of mechatronics and robotics engineering.
Ethics plays an integral role in the engineering practices of today, which is why you’ll study engineering ethics as part of your course. You’ll be taught by academics from the Inter-Disciplinary Ethics Applied Centre, as well as your lecturers, covering a wide range of topics such as professionalism and codes of conduct, corporate social responsibility, engineering and responsibility, ethics in innovation and research ethics.
The ethics training will advance your critical thinking, communication and creative problem-solving skills which are crucial to employers, but it will also help you identify and respond effectively to ethical dilemmas that you may encounter in your professional life in the engineering industry.
Each academic year, you'll take a total of 120 credits.
Course Structure
The list shown below represents typical modules/components studied and may change from time to time. Read more in our terms and conditions.
Years 1 and 2
You’ll study a wide variety of core modules in your first two years, giving you a solid foundation across different disciplines. Topics may include circuit theory, analysis and design, digital electronics, programming, artificial intelligence, solid mechanics, design and manufacture, embedded systems, and power electronics, among others. You’ll also see how mechanics, electronics, and computer engineering can come together in the development of mechatronics and robotic systems.
Year 1 compulsory modules
Circuit Analysis and Design – 20 credits
You’ll be introduced to key electronic components, the basic concepts of electronic circuit analysis and design, and the basic principles of electronic circuit test and measurement.
Computational Foundations of Artificial Intelligence – 20 credits
Take a hands-on approach to the study of core aspects of computing essential for modern engineering and applied artificial intelligence practice. You’ll become familiar with the implementation of different data structures and algorithms with Python and learn how to apply them and analyse their performance in different problem-solving contexts.
Mechanics for Mechatronics and Robotics – 20 credits
You’ll be introduced to the basic engineering principles required for analysing motion and the forces that produce it and to develop an understanding of the fundamental principles of structural analysis and its application to the general field of engineering. You’ll develop the ability and apply these techniques to tackle typical dynamics and structural problems and produce solutions for applications in mechanical engineering.
Foundations in Mechatronics and Robotics – 20 credits
Learn about of various types of robotics and mechatronic systems, starting from basic principles of robots to their numerous applications and different types of robots. You’ll be provided with the basic understanding of the knowledge required to design, control, and analyse appropriate robotic mechanisms for various applications.
Digital Electronics and Microcontrollers – 20 credits
You’ll be introduced to the fundamentals of digital electronics, logic circuits, C++ and microcontrollers. You’ll gain insight into the development, simplification and simulation of combinational and sequential logic circuits, and develop an understanding of their place within typical microcontroller architectures. You’ll also learn how to interface with various electronic components and develop your own project-based embedded system.
Introduction to Engineering Mathematics – 20 credits
Develop your knowledge and understanding of the key mathematical principles necessary to underpin your education in engineering. On completion of this module, you should be able to apply mathematical methods, tools and notations to the analysis and solution of engineering problems.
Year 2 compulsory modules
Electronic Circuit and Systems Design – 20 credits
Gain the necessary skills and knowledge to design and build a variety of electronic circuits and systems. This will include aspects of underlying circuit theory, simulation, and practical implementation.
Machine Learning – 20 credits
This module provides you with the fundamentals of machine learning, introducing basic machine learning concepts and algorithms which serves as a foundation to more specialised topics in artificial intelligence. Also, you’ll take a hands-on approach to the application of machine learning for tackling problems using pattern recognition, data-driven methods and statistical techniques.
Power Electronics – 20 credits
Develop the appropriate analytical skills and knowledge to design electrical power converters whilst gaining an understanding of power electronic conversion techniques, including the basic converters (DC-DC, AC-DC and DC-AC). You’ll learn the methods of circuit analysis applicable to switched mode circuits and become familiar with the properties of the relevant semiconductor devices.
Embedded Systems Project – 20 credits
This module will challenge you to design a prototype product within a tightly constrained set of software tools and hardware components. You’ll be equipped to proficiently write, compile, run and debug C++ programs using standard techniques. It involves implementing diverse embedded software techniques on microcontrollers, emphasising the refining of diverse project skills in embedded systems design projects. The major objective is to develop proficiency in programming a state-of-the-art microcontroller to interface with sensors/actuators and a display, as required. You’ll also learn project management and presentation skills.
Mechatronics Integrated Design and Manufacture – 40 credits
Learn how to follow a structured process to design mechatronic devices, and use solid modelling software to create solid models, assembly models and simple engineering drawings. You’ll gain an appreciation for design science and build simple mechatronic devices. Basic manufacturing processes and ethical considerations relating to design will also be covered.
Year 3
You’ll build on your knowledge in a more specialised direction. You’ll study key areas in mechatronics and robotics such as control systems, electric machines and artificial intelligence. An individual project will allow you to focus on an engineering problem in depth.
Compulsory modules
Electric Machines – 20 credits
Get introduced to the principles of electromechanical conversion with a focus on both DC and AC electric machines. This module covers the operation of electric machines, starting from basic electromechanical conversion principles to their numerous applications and visiting different machine types and designs. You’ll be equipped with the necessary skills to select and analyse appropriate electric machines for different applications.
Artificial Intelligence – 20 credits
This module builds on previous modules and provides you with knowledge and skills in more specialised topics in artificial intelligence. You’ll study advanced topics in artificial intelligence such as deep learning, reinforcement learning and optimisation. The module is intended to develop your understanding in artificial intelligence that’s essential for the development of autonomous systems. This includes exploring the principles of explainable artificial intelligence and embedding responsible innovation and ethics in their practice.
Control Systems – 20 credits
Gain an understanding of the theory and practice of control systems, including linear systems analysis using Laplace transforms and transfer functions, the transient response of feedback systems and stability criteria.
Mechatronics and Robotics Project – 40 credits
You'll complete a major individual engineering project under the supervision of an individual member of the academic staff. The individual engineering project will give you the opportunity to choose a project area in which you can carry out research and apply knowledge gained from core engineering modules, with a particular focus on the design of control systems, integration of sensors and actuators, electrical and mechanical mechanisms, and demonstration of such a system with appropriate software. You'll apply professional skills, including project management, risk management, decision making and identifying and managing cost drivers. Delivery of a final project report will give you the opportunity to apply critical analysis and detailed research in addition to developing your communication skills.
Electric Power Systems – 10 credits
This module provides basic understanding of how power systems are designed and operated. It covers key aspects such as generation, transmission, distribution, and utilisation of electric power. You'll learn about various components like transformers, transmission lines, the concept of per unit system and study power system analysis methods. The module also explores pressing challenges in power systems, including renewable integration and smart grid technologies. Throughout the module, you’ll have the opportunity to learn relevant programming tools (DIgSILENT PowerFactory) to model, design and analyse power systems.
Professional Studies – 10 credits
Explore the key aspects of working in a professional engineering environment and managing engineering activity. You’ll develop a good understanding of the importance of engineering to society as well as the need to consider ethical, societal and environmental issues that accompany new technologies. You’ll also learn about other topics relating to professional engineering such as quality management, risk management, innovation management, finance, intellectual property and data protection.
Year 4
You’ll be introduced to different applications of robotics and mechatronics and benefit from an even broader choice of modules. You could focus on power electronics and drives, more specialised robotics and topics in computing, amongst others. You’ll also develop your understanding of the industry through a major individual project and complete a substantial team project.
You’ll have the opportunity to work with your supervisors throughout the project, who’ll be experts in their research area.
Recent projects include:
- Autonomous search-and-rescue robot
- Quadrocopter surveillance drone
- Multiple antenna transmission and OFDMA for WiMax
- Surgical inspection robot
- Assistive exoskeletons
Compulsory modules
Modern Industry Practice – 15 credits
Professional engineers need to have a sound knowledge of how the engineering industry operates, including the different roles within companies, the operation of supply chains, legal and contractual issues and much more. This knowledge is vital for individual career planning. This module aims to help you develop a detailed understanding of the global engineering industry and will assist you in making appropriate career plans. You’ll learn about diverse roles within the workplace, focusing on topics such as personal development, CV writing and the recruitment process. You'll cover research, innovation and entrepreneurship in engineering, with emphasis on the practical aspects of working in industry through case studies and company profiles. Ethical considerations, professionalism and sustainability also feature in this module, including the ethics of AI within the broader context of sustainability, systems engineering and innovation.
Team Project – 45 credits
Undertake an advanced engineering project in groups of 3 to 6 supervised by a member of staff and mentored by a collaborator from industry. The projects are set up to emulate professional practices: you’ll be required to develop a tender or business plan with industrial mentors acting as customers.
Optional modules (selection below indicative of typical options)
You will study four modules from the list below.
Power Electronics and Drives – 15 credits
You'll have the opportunity to explore the applications of power electronics for machines and other conventional electrical systems. You'll gain skills in analysing, designing, simulating and evaluating power converters for the control of various applications.
Control Systems Design – 15 credits
This module covers the analysis and design of control systems. You'll develop knowledge and build an understanding of linear systems, enabling you to analytically investigate control systems and simulate them using computer tools. You’ll have the opportunity to design and evaluate PID and compensator-based controllers using several analytical techniques. You’ll also be introduced to the principles of digital control systems and methods for their implementation.
Aerial Robotics – 15 credits
You'll be introduced to aerial robotics and learn the foundational skills in the design, control, and operation, ethical and legal aspects.
Biomechatronics and Medical Robotics – 15 credits
Biomechatronics is the application of mechatronic engineering to human biology. This module will provide you with an understanding of biomechatronic and Medical Robotic engineering systems challenges, solutions and analysis. The module covers a number of areas of interest including sensors, actuators and Artificial Intelligence for control applications.
FPGA Design for System-on-Chip – 15 credits
Explore the use of Hardware Description Language (HDL) for designing digital circuits and the industry-standard software tools used for the implementation of reprogrammable digital logic circuits using FPGAs. You'll be provided with a hardware platform to explore and test the concepts learned. Examination is conducted predominantly through small group mini project work.
Embedded Microprocessor System Design – 15 credits
This module explores the use of microprocessors in a System on Chip (SoC) environment and uses the C-language and industry-standard software tools for implementation on an advanced Arm A9 Processor. This module provides an opportunity to develop your skills in the use of contemporary design tools which support the optimisation of embedded processor architectures. You'll use a hardware platform to explore and test the concepts learned. You’ll be assessed through an open-ended mini project, undertaken in small groups, giving you the opportunity to demonstrate the key skills and techniques you’ve developed in the class.
Intelligent Systems and Robotics – 15 credits
Learn how AI techniques and principles from biological systems can be applied to robots to control behaviour and sense environments. You’ll develop an understanding of the theoretical problems inherent in robotics and use pre-built robots to design, implement and test different control and perceptual systems.
Bio-inspired Computing – 15 credits
This module considers examples of cooperative phenomena in nature and the concepts of emergence and self-organisation. You’ll design and apply simple genetic algorithms, and you’ll Interpret the behaviour of algorithms based on the cooperative behaviour of distributed agents with no, or little, central control. This module will also cover how to implement bio-inspired algorithms to solve a range of problems.
Project work
Every year of your course gives you hands-on experience of project work. This gives you the opportunity to explore your subject further as well as developing valuable skills in problem solving, communication and teamwork.
One-year optional work placement or study abroad
During your course, you’ll be given the opportunity to advance your skill set and experience further. You can apply to either undertake a one-year industrial work placement or study abroad for a year, choosing from a selection of universities we’re in partnership with worldwide.
Learning and teaching
As an engineering student at Leeds, we ensure that you benefit from a wide range of teaching methods, including lectures, workshops, small group tutorials and practical lab work.
Laboratory classes and project work allows you to gain first-hand experience investigating and applying material from your lectures and tutorials to real-life work situations. Together, they’ll equip you with in-depth knowledge, key practical skills and transferable skills that will help you secure a graduate job. Our close links with industry also mean that you have direct contact with industry and potential employers from an early stage in your course.
You’ll be assigned an academic personal tutor to guide you through your studies, and you’ll receive support from fellow students through our peer mentoring scheme. Peer mentors are students who are on your course but are in years 2 or 3. They’ll help you when you arrive at university and throughout your first year. You’ll meet your peer mentors during your first week for a social activity.
On this course, you’ll be taught by our expert academics, from lecturers through to professors. You may also be taught by industry professionals with years of experience, as well as trained postgraduate researchers, connecting you to some of the brightest minds on campus.
Assessment
Most modules are assessed by more than one component. These components can include written examinations held at the end of each year, in-class and online tests, example sheets, assignments and coursework in the form of reports, projects, presentations and posters.
Entry requirements
A-level: AAA including Mathematics.
Where an A-Level Science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-Level at the stated grade.
Excludes A-Level General Studies or Critical Thinking.
Extended Project Qualification (EPQ), International Project Qualification (IPQ) and Welsh Baccalaureate Advanced Skills Challenge Certificate (ASCC): We recognise the value of these qualifications and the effort and enthusiasm that applicants put into them, and where an applicant offers an A in the EPQ, IPQ or ASCC we may make an offer of AAB at A-Level (any required subjects such as Mathematics must still be at grade A).
GCSE: English Language at grade C (4) or above, or an appropriate English language qualification. We will accept Level 2 Functional Skills English in lieu of GCSE English.
GCSE: English Language at grade C (4) or above, or an appropriate English language qualification. We will accept Level 2 Functional Skills English in lieu of GCSE English.
Alternative qualification
Access to HE Diploma
Pass 60 credits overall with 45 credits at Level 3, with Distinction, to include Mathematics, Calculus, Further Calculus and Physics, plus a diagnostic Maths test.
BTEC
DDD with Distinctions in all Mathematics units plus grade A in A-Level Maths. Mathematics units must usually include Further Maths and/or other appropriate Maths units – some may be optional on your BTEC but are required by the Faculty. Please contact us for further information.
Please note – there may be different requirements for the older QCF BTEC’s, please contact Admissions.
Cambridge Pre-U
D3, D3, D3 including Mathematics.
International Baccalaureate
18 points at Higher Level to include 5 in HL Mathematics: Analysis and Approaches or 6 in HL Mathematics: Applications and Interpretation
Irish Leaving Certificate (higher Level)
H1 H2 H2 H2 H2 H2, including Mathematics.
Scottish Highers / Advanced Highers
AA at Advanced Higher level, including Mathematics and AABBB at Higher Level.
Read more about UK and Republic of Ireland accepted qualifications or contact the Schools Undergraduate Admissions Team.
Alternative entry
We’re committed to identifying the best possible applicants, regardless of personal circumstances or background.
Access to Leeds is a contextual admissions scheme which accepts applications from individuals who might be from low income households, in the first generation of their immediate family to apply to higher education, or have had their studies disrupted.
Find out more about Access to Leeds and contextual admissions.
Typical Access to Leeds A Level offer: ABB including Mathematics and dependant on successful completion of the Access to Leeds Scheme.
For alternative qualification offers please contact the admissions team.
Foundation years
If you do not have the formal qualifications for immediate entry to one of our degrees, you may be able to progress through a foundation year.
We offer a Studies in Science with Foundation Year BSc for students without science and mathematics qualifications.
You could also study our Interdisciplinary Science with Foundation Year BSc which is for applicants whose background is less represented at university.
On successful completion of your foundation year, you will be able to progress onto your chosen course.
International
We accept a range of international equivalent qualifications. For more information, please contact the Admissions Team.
International Foundation Year
International students who do not meet the academic requirements for undergraduate study may be able to study the University of Leeds International Foundation Year. This gives you the opportunity to study on campus, be taught by University of Leeds academics and progress onto a wide range of Leeds undergraduate courses. Find out more about International Foundation Year programmes.
English language requirements
IELTS 6.0 overall, with no less than 5.5 in each section. For other English qualifications, read English language equivalent qualifications.
Improve your English
If you're an international student and you don't meet the English language requirements for this programme, you may be able to study our undergraduate pre-sessional English course, to help improve your English language level.
Fees
UK: To be confirmed
International: £32,250 (per year)
Tuition fees for UK undergraduate students starting in 2024/25
Tuition fees for UK full-time undergraduate students are set by the UK Government and will be £9,250 for students starting in 2024/25.
The fee may increase in future years of your course in line with inflation only, as a consequence of future changes in Government legislation and as permitted by law.
Tuition fees for UK undergraduate students starting in 2025/26
Tuition fees for UK full-time undergraduate students starting in 2025/26 have not yet been confirmed by the UK government. When the fee is available we will update individual course pages.
Tuition fees for international undergraduate students starting in 2024/25 and 2025/26
Tuition fees for international students for 2024/25 are available on individual course pages. Fees for students starting in 2025/26 will be available from September 2024.
Tuition fees for a study abroad or work placement year
If you take a study abroad or work placement year, you’ll pay a reduced tuition fee during this period. For more information, see Study abroad and work placement tuition fees and loans.
Read more about paying fees and charges.
Additional cost information
You can enhance your learning experience by acquiring a laptop and scientific calculator. A laptop will be particularly useful when you’re conducting project work off campus. However, we do have laboratories and computer clusters equipped with all the necessary software you’ll need to complete your course work.
We, as a School, will also loan you kits for the Digital Electronics and Microcontrollers and Embedded System Project modules to enhance your learning outside timetabled session. These kits, equipped with a microcontroller and various components, empower you to work beyond the course content, encouraging deeper understanding.
There may be additional costs related to your course or programme of study, or related to being a student at the University of Leeds. Read more on our living costs and budgeting page.
Scholarships and financial support
If you have the talent and drive, we want you to be able to study with us, whatever your financial circumstances. There is help for students in the form of loans and non-repayable grants from the University and from the government. Find out more in our Undergraduate funding overview.
Applying
Apply to this course and check the deadline for applications through the UCAS website.
We may consider applications submitted after the deadline. Availability of courses in UCAS Extra will be detailed on UCAS at the appropriate stage in the cycle.
Admissions guidance
Read our admissions guidance about applying and writing your personal statement.
What happens after you’ve applied
You can keep up to date with the progress of your application through UCAS.
UCAS will notify you when we make a decision on your application. If you receive an offer, you can inform us of your decision to accept or decline your place through UCAS.
How long will it take to receive a decision
We typically receive a high number of applications to our courses. For applications submitted by the January UCAS deadline, UCAS asks universities to make decisions by mid-May at the latest.
Offer holder events
If you receive an offer from us, you’ll be invited to an offer holder event. This event is more in-depth than an open day. It gives you the chance to learn more about your course and get your questions answered by academic staff and students. Plus, you can explore our campus, facilities and accommodation.
International applicants
International students apply through UCAS in the same way as UK students.
We recommend that international students apply as early as possible to ensure that they have time to apply for their visa.
Read about visas, immigration and other information here.
If you’re unsure about the application process, contact the admissions team for help.
Admissions policy
University of Leeds Admissions Policy 2025
This course is taught by
School of Electronic and Electrical Engineering
School of Mechanical Engineering
School of Computer Science
Contact us
School of Electronic and Electrical Engineering Undergraduate Admissions
Email: ugelec@leeds.ac.uk
Telephone:
Career opportunities
Because of the nature of the industry, the demand for high-calibre engineering graduates is huge and far-reaching, with the potential to take you all over the world.
Plus, University of Leeds students are among the top 5 most targeted by top employers according to The Graduate Market 2024, High Fliers Research, meaning our graduates are highly sought after by some of the most reputable companies in the field.
Qualifying with a degree in mechatronic and robotics engineering from Leeds will set you up with the core foundations you need to pursue an exciting career across a wide range of industries, including:
- Energy
- Pharmaceuticals
- Healthcare
- Transport
- Construction
- Utilities
- Automotive
- Gaming
- Telecommunications
- Electronics and technology
- Manufacturing
The breadth of knowledge and experience, along with the teamwork, design, problem-solving, communication and numerical and analytical skills taught on the course are widely transferable and desirable to a whole host of employers.
Here’s an insight into the job roles some of our graduates have obtained:
- Consultant, Accenture
- Graduate Systems Engineer, ABB
- Operations Area Manager, Amazon
- System Design Lead, BAE Systems
- Instrumentation and Protective System Engineer, BP
- RDD Manager, Dyson Ltd
- Systems Engineer, Emerson Electric
- Teacher, Ministry of Education
- Race Engineer, Redbull F1
- Senior Software Developer, Yorkshire Water Services Ltd
- Quality Assurance Engineer, Toshiba
- Principal Engineer, JCB
- Vehicle Systems Manager, BAE Systems
- Mechatronics Engineer, ALTINAY Robot Technologies Inc.
Read our alumni profiles to find out more about where our students are working.
Careers support
At Leeds, we help you to prepare for your future from day one. Our Leeds for Life initiative is designed to help you develop and demonstrate the skills and experience you need for when you graduate. We’ll help you to access opportunities across the University and record your key achievements so you are able to articulate them clearly and confidently.
You’ll be supported throughout your studies by our dedicated Employability Team, who will provide you with specialist support and advice to help you find relevant work experience, internships and industrial placements, as well as graduate positions. You’ll benefit from timetabled employability sessions, support during internships and placements, and presentations and workshops delivered by employers.
Explore more about your employability opportunities at the University of Leeds.
You’ll also have full access to the University’s Careers Centre, which is one of the largest in the country.
Study abroad and work placements
Study abroad
Studying abroad is a unique opportunity to explore the world, whilst gaining invaluable skills and experience that could enhance your future employability and career prospects too.
From Europe to Asia, the USA to Australasia, we have many University partners worldwide you can apply to, spanning across some of the most popular destinations for students.
This programme offers you the option to spend time abroad as an extra academic year and will extend your studies by 12 months.
Once you’ve successfully completed your year abroad, you'll be awarded the ‘international’ variant in your degree title which demonstrates your added experience to future employers.
Find out more at the Study Abroad website.
Work placements
An industrial placement year is a great way to help you decide on a career path when you graduate. You’ll develop your skills and gain a real insight into working life in a particular company or sector. It will also help you to stand out in a competitive graduate jobs market and improve your chances of securing the career you want.
Benefits of a work placement year:
- 100+ organisations to choose from, both in the UK and overseas
- Build industry contacts within your chosen field
- Our close industry links mean you’ll be in direct contact with potential employers
- Advance your experience and skills by putting the course teachings into practice
- Gain invaluable insight into working as a professional in this industry
- Improve your employability
If you decide to undertake a placement year, this will extend your period of study by 12 months and, on successful completion, you’ll be awarded the ‘industrial’ variant in your degree title to demonstrate your added experience to future employers.
With the help and support of our dedicated Employability Team, you can find the right placement to suit you and your future career goals.
Here are some examples of placements our students have recently completed:
- Electrical Engineering Intern, Rolls-Royce Motor Cars Limited
- Electronics Student Placement, Red Bull Technology Limited
- Hardware Engineering Intern, GE Aviation Systems Limited
- Technical Program Management Intern, Amazon UK Services Ltd
- PE - Electronics & Complex Systems - Undergraduate, Jaguar Land Rover
- Software Intern, Sony
- Undergraduate Applications/Support Engineer, Beckhoff Automation Limited
- Game/XR Production Intern, Unity Software Ltd
- Placement student in the Integrated Components & Solutions team, Caterpillar Inc.
Find out more about Industrial placements
Student profile: Kavandeep Sandhu
The need for mechatronics and robotics goes beyond the obvious robot takeover that springs to mind; with applications in medicine, renewable energy, smart cities, and more.Find out more about Kavandeep Sandhu's time at Leeds