Physics BSc
- Duration
- 3 Years (Full time)
- Typical A-level offer
- AAA
- UCAS code
- F300
Theoretical physics uses mathematical methods to delve into the physics that governs our world and our universe. From developing cancer treatments and artificial intelligence to answering the fundamental questions of the universe, physics and physicists have had a significant impact across a variety of different industries – which is why it’s still such a sought-after and relevant discipline today.
Studying the theoretical physics degree at Leeds will provide you with a solid grounding in how mathematical methods are applied to physics topics alongside experience in conducting your own project work based on current research areas – including a collaborative research project in your final year. Throughout your degree, you’ll have access to excellent facilities right here on campus, including laboratories and teaching spaces in the Sir William Henry Bragg Building.
Our close industry links and innovative research activity ensure this course reflects the latest advancements and applications in physics. You'll graduate with the specialist knowledge, skills and experience necessary to launch a successful career in this highly valued profession, with a wide range of career options available to you.
This programme gives you the opportunity to undertake a paid industrial placement year as part of the course. Our close industry links give you the platform to apply to a number of major organisations such as Elder Studios Ltd, Defence Science & Technology Laboratory and QinetiQ.
Accreditation is the assurance that a university course meets the quality standards established by the relevant professional body.
This course is accredited by the Institute of Physics (IOP).
This BSc degree guarantees you eligibility for IOP membership and is accredited as meeting the academic requirement needed to follow the route to professional registration as a registered scientist (RSci) or a chartered physicist (CPhys).
We’ve designed our programme to enable you to develop your physics knowledge alongside the mathematical, computational and experimental methods that are needed to become qualified as a physicist.
As you move through the programme, you'll increasingly build on your solid foundation in physics to learn about and work on the latest developments in the subject, based on our research expertise.
In year 3, you can choose modules from the School of Mathematics in group theory and symmetries, fluid dynamics, geometry and topology and nonlinear dynamics.
We take a competency-based approach to assessment, to enable you to demonstrate your skills and knowledge across a range of activities.
Each academic year, you'll take a total of 120 credits.
The list shown below represents typical modules/components studied and may change from time to time. Read more in our terms and conditions.
Most courses consist of compulsory and optional modules. There may be some optional modules omitted below. This is because they are currently being refreshed to make sure students have the best possible experience. Before you enter each year, full details of all modules for that year will be provided.
Throughout the first two years of your degree, you’ll gain knowledge and skills in physics and learn how to apply them to solve problems across the fundamental areas including: electrodynamics, thermal physics, classical mechanics, quantum physics, solid state physics, waves, optics, contemporary physics, astrophysics and physics for sustainable development. We’ll also cover topics such as ethics, philosophy and career options in physics.
Mechanics, Relativity and Astrophysics – 20 credits
In mechanics, you’ll learn how to describe motion through physical space, together with the general causes of that motion: forces and energies. You'll also learn about using appropriate co-ordinate systems and the synergies between linear and circular motions. You’ll develop the mathematical skills to describe mechanical processes, including vectors, unit vectors, scalar and vector products, calculus and summations.
In special relativity, you'll extend your knowledge of co-ordinate systems to study motion as it appears to observers moving at different speeds. You'll also cover the theories originally developed by Einstein to describe this motion at speeds approaching the speed of light, and how the forces and energies of classical mechanics extend into the regime.
In Astrophysics, you'll learn how to apply basic physical principles to objects in the Universe and explore the basics of radiation and how we observe these phenomena.
Thermodynamics – 20 credits
Explore the underpinning theories and concepts of thermodynamics. Examples and applications will be used to allow you to build your understanding and application of this branch of physics, including in sustainable energy, which governs the behaviour of the universe we live in.
Electronics, Solid State and Introduction to Quantum Physics – 20 credits
In solid state and quantum physics, you’ll cover the underpinning theories and concepts including mechanics of solids, Bohr atom, atomic electron states, elementary bonding, elasticity, Photoelectric effect, Compton scattering, De Broglie relation, Wave-particle duality Crystal structure and X-ray diffraction.
In addition, you’ll analyse and design simple electric circuits using fundamental circuit elements, such as resistors, capacitors and inductors.
You’ll also learn the principles of Boolean algebra and its application in digital logic design.
Vibrations, Waves and Optics – 20 credits
Vibrations and waves are ubiquitous phenomena, occurring in widely different physical systems, from molecules to musical instruments to tectonic plates. Nevertheless, they can be described by a common mathematical approach, which this module provides.
In vibrations and waves, you’ll learn about oscillators, energy and resonance, different types of waves, energy/power transfer, reflection and transmission, impedance, superposition and interference, the wave-like behaviour of light, mirrors, lenses, nonlinear optics and lasers, the solution of 2nd order partial differential equations, complex numbers, Fourier series and an introduction to Fourier transforms.
Coding and Experimental Physics – 20 credits
Develop practical experimental, computational, communication and employability skills. You’ll build experimental skills through a range of laboratory tasks undertaken throughout the year and be introduced to programming using the Python computer programming language. You’ll also undertake tasks and assessments designed to improve your teamwork and presentation skills, as well as reflective practice.
You’ll choose either one or both of the following optional modules. Or you may choose to combine one optional module with discovery modules.
Discovery modules give you the chance to apply your physics toolkit in real-world scenarios whilst expanding out into different areas, broadening your knowledge and giving you that competitive edge in the jobs market.
Please note: The modules listed below are indicative of typical options.
Introduction to Nanotechnology – 10 credits
The smallest possible devices that can be fabricated are on the nanometre length scale. Miniaturisation of devices offers many new technological opportunities, which are only just starting to be implemented in our lives. The physical properties of nanomaterials differ from both the constituent atoms and the bulk material. These can be unique and surprising. This module aims to introduce the physics behind nanotechnology in a semi-quantitative manner, without requiring knowledge of quantum mechanics or Maxwell’s equations. To understand nanotechnology, we will describe the physics of atoms and molecules, before moving on to discuss nano and bulk properties. We will cover a number of nanotechnological applications currently adopted and on the horizon, including nanomedicine.
Planets and the Search for Life – 10 credits
Explore the multitude of planets that are currently being discovered around other stars and compare them to those in our solar system. This module will concentrate on the concepts involved and is non-mathematical, and therefore amenable to students of the arts, humanities and sciences. We will examine the origin and evolution of the solar system and how it is likely to have produced the range of planets, moons and minor bodies that we see today. This will be contrasted with the range of extra-solar planets, their detection, properties, and how they challenge our understanding of how planets are formed. Finally, the conditions for life to emerge will be discussed and the prospects and techniques for finding life elsewhere in the solar system and on exo-planets will be explored.
Quantum Mechanics – 20 credits
Learn how to describe quantum systems using wavefunctions, operators and linear algebra and how to predict outcomes of measurements on quantum systems. You’ll also learn to solve the Schrodinger equation for simple model systems and understand the structure of atoms and molecules using the exclusion principle and spin.
In addition, you’ll learn about the structure of the atomic nucleus, predict various forms of radioactive decay and nuclear reactions, describe scattering processes between elementary particles and understand the key components of the Standard Model of particle physics.
Statistical Mechanics and Computation – 20 credits
This module explores the concepts and applications of statistical mechanics, which are key to understanding the behaviour of small-particle systems.
This module will also enable students to translate descriptions of physical problems and data analysis processes into short programs to read and manipulate data, analyse and present the results for problems relevant to physics using a programming language.
Condensed Matter Physics – 20 credits
During this module, you’ll learn about the use of the density of states to explain some of the differences between metals, semiconductors and insulators. You’ll also cover how to derive the free-electron density of states, perform straight-forward calculations based on the free-electron theory and how a periodic potential modifies the free-electron dispersion relation, solving problems on the transport properties of semiconductors, and calculating the magnetic properties (consistent with the syllabus) of paramagnets and ferromagnets.
You’ll also build skills in communicating physics in preparation for projects/dissertations and research a topic of physics and communicate it in various formats whilst considering the importance of professional ethics and scientific conduct.
Electromagnetism – 20 credits
Learn how to use the integral versions of Maxwell's equations and to calculate fields in cases of simple symmetric geometry, calculate the force and energy in electric and magnetic fields, Maxwell's equations in both integral and differential form and discuss their derivation from the physical laws of electromagnetism. You’ll analyse simple AC circuits containing resistors, capacitors and inductors and apply logic principles to real-world scenarios in electronics and emerging technologies, developing the knowledge and skills needed to navigate the evolving landscape of electronic systems, from classical to quantum. As part of this module, you’ll also consider future career plans and complete a CV, LinkedIn profile and job application forms.
You’ll combine discovery modules with a selection of the following optional modules.
Please note: The modules listed below are indicative of typical options.
Calculus of Variations – 10 credits
The calculus of variations concerns problems in which one wishes to find the extrema of some quantity over a system that has functional degrees of freedom. Many important problems arise in this way across pure and applied mathematics. In this module, you’ll meet the system of differential equations arising from such variational problems: the Euler-Lagrange equations. These equations and the techniques for their solution, will be studied in detail.
Further Linear Algebra and Discrete Mathematics – 20 credits
Explore the more abstract ideas of vector spaces and linear transformations, together with introducing the area of discrete mathematics.
Introduction to Logic – 10 credits
This module is an introduction to mathematical logic introducing formal languages that can be used to express mathematical ideas and arguments. It throws light on mathematics itself, because it can be applied to problems in philosophy, linguistics, computer science and other areas.
Rings and Polynomials – 10 credits
Rings are one of the fundamental concepts of mathematics, and they play a key role in many areas, including algebraic geometry, number theory, Galois theory and representation theory. The aim of this module is to give an introduction to rings. The emphasis will be on interesting examples of rings and their properties.
You’ll have the opportunity to apply to spend a year in industry. A work placement is an invaluable opportunity to transfer your learning into a practical setting, applying the knowledge and skills you’ve been taught throughout your degree to real-world challenges – in a working environment. It’s important to note, work placements are not guaranteed.
In the final year of your degree, your work will be closely linked to our current research. We offer advanced modules on research topics, such as: spintronics, quantum optics and photonics, bionanophysics, quantum information, molecular simulation, advanced mechanics, medical physics, physics education research and cosmology.
We also offer work-related modules that involve innovation projects or short work placements. In year 3 you can choose from modules from the School of Mathematics in group theory and symmetries, fluid dynamics, geometry and topology and nonlinear dynamics. Our students are also able to study higher-level modules offered by the Schools of Medicine, Earth and Environment, Chemical Engineering and Philosophy.
For your final year project, you’ll work as part of an internationally recognised research team on an open-ended project. You'll plan and organise your work, follow it through and present your results. This is a wonderful opportunity to take part and contribute to the latest physics research and join one of our research groups. Some of our students even get to publish their research project in peer reviewed journals.
Project – 40 credits
This is your chance to carry out an independent research project, under the supervision of the academic staff. You’ll prepare and plan out a programme of research (experimental/ computing/ theoretical/ education) or an extended review of the literature (dissertation) in physics or a related discipline. Throughout the project, you’ll develop and advance key skills in research, planning, report writing and presentation.
Develop a broad knowledge, understanding and application of core areas in advanced physics and be able to solve unseen, problem-led questions in these areas.
You’ll combine discovery modules with a selection of the following optional modules.
Please note: The modules listed below are indicative of typical options and some of these options may not be available, depending on other modules you have selected already.
Computational Simulations – 20 credits
Explore the theory of molecular dynamics and Monte Carlo simulations of materials, including biomolecules, with practical experience using standard software packages to perform these simulations on high performance computing facilities. The module will provide insight into the use of computing simulation in industry and engineering.
Theoretical Elementary Particle Physics – 20 credits
This module provides an in-depth introduction to theoretical particle physics. It is a basis for further study in particle physics, astrophysics, detector physics and other areas of science and technology, which require elementary knowledge of particle physics concepts.
Medical Physics 1 – 20 credits
Module description coming soon.
Earth and Environment option 1 – 20 credits
Module description coming soon.
Philosophy of Modern Physics – 20 credits
Examine philosophical issues connected with modern physics (e.g. quantum mechanics, special and general relativity), such as determinism, causality and the nature of space and time.
Cosmology – 20 credits
Gain the fundamental knowledge for understanding the basis for both observational and theoretical cosmology. You’ll see how the geometry of the Universe affects its evolution and how the contents of the Universe shape its geometry. You’ll study how we make measurements of distant stars and galaxies to study the properties of the expansion of the Universe, as well as studying the physics of the early Universe, when the seeds of the objects that turned into the Galaxies around us were first created. You’ll cover from the first 10^-43 seconds through to the present day.
Magnetism in Condensed Matter – 20 credits
Magnetic materials underpin much of modern technology and thus our everyday lives, from electric motors to data storage, sensors and computing. An understanding of magnetism in condensed matter requires knowledge in several areas of physics to be brought together, including classical and quantum mechanics, statistical physics and condensed matter physics. The first half of this module focuses on the theory of ferromagnetism, while the second half uncovers the physics behind the applications, such as permanent magnets and spin electronics.
Quantum Photonics – 20 credits
Gain insight into the quantum mechanics of open quantum systems. You'll study the interactions between light and matter on the level of single photons and single atoms and concepts widely used in quantum optics and in condensed matter physics and quantum field theory.
Medical Physics 2 – 20 credits
Module description coming soon.
Earth and Environment 2 – 20 credits
Module description coming soon.
Physics into Schools – 20 credits
If you’re considering a career in teaching, this module gives you the chance to understand and experience what it’s like to teach physics. By undertaking a placement or teaching activities, you’ll develop key skills utilised in the teaching profession. And while not exclusively for students considering a career in teaching, it can help you decide, and advantage you in this career route.
Group Innovation Project – 20 credits
This module brings together science and entrepreneurship. You'll work in a team to develop a business plan around an idea for an enterprise based on current scientific research that can help to address the UN’s Sustainable Development Goals. This will culminate in a presentation to an "investment panel". Throughout the module, you’ll further develop your skills in teamwork, project and time management, commercial awareness and self-reflection while providing valuable insight into the commercial side of science.
Nuclear Operations – 20 credits
Nuclear energy will be a major part of the UK's strategy to generate low (no) carbon energy. To understand how the technology fits into that strategy, as well as how the UK nuclear industry has developed into one of the largest in the world, you need to know about a wide range of operations across the nuclear fuel cycle. This module will give you a basic understanding of the physics and chemistry behind nuclear operations, as well as the engineering.
Communicating Science – 20 credits
Explore a broad range of issues and associated challenges within science education. You’ll learn about historical developments in science education, how young people think about science concepts and approaches to teaching/learning science.
Project work
Throughout your degree, you’ll get hands-on experience through project work. This gives you the opportunity to explore your subject further as well as developing valuable skills in problem solving, communication and teamwork.
We have an integrated approach to the teaching on our programmes, bringing together theoretical and practical learning to train you to become a physicist. You'll be taught through several different approaches, including lectures, workshops, small-group tutorials, laboratory work, project work and digitally enhanced learning.
In the first two years, our teaching is delivered using interactive in-person lectures, small group tutorials and larger workshops, where you'll develop your problem-solving skills. In later years, the lecturer will usually support their own specialist material through a combination of lectures and workshops.
Experimental physics is an essential part of our teaching. It provides you with the opportunity to develop your verbal and written communication skills through performing experiments individually, and as part of a group. Computer programming is an integral part of physics, and during the first two years you'll be taught the programming skills that you need, using Python.
All students are assigned a personal tutor. During year 1, your personal tutor will also host your weekly tutorials, so you'll really get to know them well, alongside a small group of other students, which really helps our students to settle into university study. Your personal tutor is there to offer advice, monitor your progress, and be your first point of contact throughout your years of study.
We also have a peer assisted learning scheme, where higher year students meet weekly with first years to support their learning and help them to settle into university life.
There are many facilities that will support your studies including extensive computer clusters and study areas.
Watch our taster lectures to get a flavour of what it’s like to study at Leeds:
On this course, you’ll be taught by our expert academics, from lecturers through to professors. You may also be taught by industry professionals with years of experience, as well as trained postgraduate researchers, connecting you to some of the brightest minds on campus.
In this programme, we will utilise a variety of assessment methods, including written reports, open-book exams, online tests and presentations.
In your final year, the programme features a research project, which emphasises open-ended investigations and includes written and verbal presentations.
Additionally, the programme places emphasis on the development of teamwork skills, as they are becoming increasingly important in today's workplaces. Thus, group work opportunities are an integral part of the programme.
A-level: AAA including Physics and Mathematics.
Excludes A Level General Studies and Critical Thinking.
Where an A Level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A Level at the stated grade.
Extended Project Qualification (EPQ) and International Project Qualification (IPQ): We recognise the value of these qualifications and the effort and enthusiasm that applicants put into them, and where an applicant offers an A in the EPQ, IPQ or ASCC we may make an offer of AAB at A-Level.
GCSE: English Language at grade C (4) or above, or an appropriate English language qualification. We will accept Level 2 Functional Skills English in lieu of GCSE English.
Overall pass of the Access to HE, with 45 credits at level 3. Of these 45 credits, 30 level 3 credits must be in Physics and Mathematics and must be passed with Distinction.
BTEC qualifications in relevant disciplines are considered in combination with A Level Physics and Mathematics. Applicants should contact the School to discuss.
D3, D3, M2 including Physics and Mathematics.
18 points at Higher Level to include 5 in Higher Level Physics and 5 in Higher Level Mathematics.
H1, H2, H2, H2, H2, H2 including H2 in both Physics and Mathematics.
AA at Advanced Higher in Physics and Mathematics with AABBB at Higher.
Read more about UK and Republic of Ireland accepted qualifications or contact the School’s Undergraduate Admissions Team.
We’re committed to identifying the best possible applicants, regardless of personal circumstances or background.
Access to Leeds is a contextual admissions scheme which accepts applications from individuals who might be from low income households, in the first generation of their immediate family to apply to higher education, or have had their studies disrupted.
Find out more about Access to Leeds and contextual admissions.
Typical Access to Leeds A Level offer: ABB including Physics and Mathematics. Excluding General Studies and Critical Thinking.
If you do not have the formal qualifications for immediate entry to one of our degrees, you may be able to progress through a foundation year. A Foundation Year is the first year of an extended degree. We’ve designed these courses for applicants whose backgrounds mean they are less likely to attend university and who don’t meet the typical entry requirements for an undergraduate degree.
We offer a Studies in Science with Foundation Year BSc for students without science and mathematics qualifications.
You could also study our Interdisciplinary Science with Foundation Year BSc which is for applicants whose background is less represented at university.
On successful completion of your foundation year, you will be able to progress onto your chosen course.
We accept a range of international equivalent qualifications. For more information, please contact the Admissions Team.
International students who do not meet the academic requirements for undergraduate study may be able to study the University of Leeds International Foundation Year. This gives you the opportunity to study on campus, be taught by University of Leeds academics and progress onto a wide range of Leeds undergraduate courses. Find out more about International Foundation Year programmes.
IELTS 6.0 overall, with no less than 5.5 in any one component. For other English qualifications, read English language equivalent qualifications.
Improve your English
If you're an international student and you don't meet the English language requirements for this programme, you may be able to study our undergraduate pre-sessional English course, to help improve your English language level.
UK: To be confirmed
International: £32,250 (per year)
Tuition fees for UK undergraduate students starting in 2025/26
In November 2024 the UK Government announced that the tuition fee cap may rise to £9,535 from £9,250.
The tuition fee cap for some foundation years may also reduce to £5,760 from £9,250.
This would start from the academic year 2025/26. However, this is subject to final confirmation from the Government. Once available, we’ll publish the fees for the 2025/26 academic year and individual offer letters shall be updated via email and post.
The foundation year courses affected are:
· Business Studies with Foundation Year BSc
· Arts and Humanities with Foundation Year BA
· Interdisciplinary Studies with Preparation for Higher Education BA
· Social Science (foundation year) BA
Tuition fees for international undergraduate students starting in 2024/25 and 2025/26
Tuition fees for international students for 2024/25 and 2025/26 are available on individual course pages.
Tuition fees for UK undergraduate students starting in 2024/25
Tuition fees for UK full-time undergraduate students are set by the UK Government and will be £9,250 for students starting in 2024/25.
The fee may increase in future years of your course in line with inflation only, as a consequence of future changes in Government legislation and as permitted by law.
Tuition fees for a study abroad or work placement year
If you take a study abroad or work placement year, you’ll pay a reduced tuition fee during this period. For more information, see Study abroad and work placement tuition fees and loans.
Read more about paying fees and charges.
Whilst there are no compulsory additional costs, it would be helpful to bring your own calculator. You’ll have access to all the recommended texts and a vast supply of books and academic journals from the university libraries.
You’ll also have access to the extensive IT facilities on campus including 24/7 computer clusters with everything you need to complete your work.
However, you may wish to purchase your own books and/or computer.
There may be additional costs related to your course or programme of study, or related to being a student at the University of Leeds. Read more on our living costs and budgeting page.
If you have the talent and drive, we want you to be able to study with us, whatever your financial circumstances. There is help for students in the form of loans and non-repayable grants from the University and from the government. Find out more in our Undergraduate funding overview.
Apply to this course and check the deadline for applications through the UCAS website.
We may consider applications submitted after the deadline. Availability of courses in UCAS Extra will be detailed on UCAS at the appropriate stage in the cycle.
Admissions guidance
Read our admissions guidance about applying and writing your personal statement.
What happens after you’ve applied
You can keep up to date with the progress of your application through UCAS.
UCAS will notify you when we make a decision on your application. If you receive an offer, you can inform us of your decision to accept or decline your place through UCAS.
How long will it take to receive a decision
We typically receive a high number of applications to our courses. For applications submitted by the January UCAS deadline, UCAS asks universities to make decisions by mid-May at the latest.
Offer holder events
If you receive an offer from us, you’ll be invited to an offer holder event. This event is more in-depth than an open day. It gives you the chance to learn more about your course and get your questions answered by academic staff and students. Plus, you can explore our campus, facilities and accommodation.
International applicants
International students apply through UCAS in the same way as UK students.
We recommend that international students apply as early as possible to ensure that they have time to apply for their visa.
Read about visas, immigration and other information here.
If you’re unsure about the application process, contact the admissions team for help.
University of Leeds Admissions Policy 2025
School of Physics and Astronomy
School of Physics and Astronomy Undergraduate Admissions Enquiries
Email: physics.admissions@leeds.ac.uk
Telephone:
There are extensive employment opportunities in the field of physics across numerous industries, which is why physics graduates are in demand for some of the highest paid and most satisfying roles in employment.
Plus, University of Leeds students are among the top 5 most targeted by top employers according to The Graduate Market 2024, High Fliers Research, meaning our graduates are highly sought after by some of the most reputable companies in the field.
Qualifying with a degree in physics from Leeds will set you up with the numerical, analytical and problem-solving skills and specialist subject knowledge needed to pursue an exciting career across a wide range of sectors, including:
Throughout your course – especially in your final year research project – you'll have the chance to advance your knowledge and experience, whilst developing widely transferable skills desirable to employers including teamwork, independent research, analysis and communication.
Here’s an insight into the job roles some of our most recent physics graduates have obtained:
Read our alumni profiles to find out more about where our students are working.
At Leeds, we help you to prepare for your future from day one. Our Leeds for Life initiative is designed to help you develop and demonstrate the skills and experience you need for when you graduate. We will help you to access opportunities across the University and record your key achievements so you are able to articulate them clearly and confidently.
You'll be supported throughout your studies by our dedicated Employability Team, who will provide you with specialist support and advice to help you find relevant work experience, internships and industrial placements, as well as graduate positions. You’ll benefit from timetabled employability sessions, support during internships and placements, and presentations and workshops delivered by employers.
We’re also an active partner in the White Rose Industrial Physics Academy, where we hold the UK’s largest annual Physics Careers Fair, with employers exclusively looking for physicists.
Explore more about your employability opportunities at the University of Leeds.
You'll also have full access to the University’s Careers Centre, which is one of the largest in the country.
This degree does not offer the option to study abroad. However, the Theoretical Physics (Industrial) BSc degree does have this option.
This programme gives you the opportunity to undertake a paid industrial placement year as part of the course.
It’s important to note, work placements are not guaranteed. The job market is competitive – and there may be competition for the placement you want. You’ll have to apply the same way you would for any job post, with your CV and, if successful, attend an interview with the organisation.
Our Employability Team will help you every step of the way. They run a number of placement sessions to discuss opportunities and support you with CV writing and interview preparations. Plus, they’ll be there to answer any questions you may have and offer guidance throughout the process, too.
Benefits of a work placement year:
Here are some examples of placements our students have recently completed:
Find out more about Industrial placements.
I love the flexibility with my course, I can really focus on the subject areas that I’m interested in through the optional modules.Find out more about Millie Sandford's time at Leeds